Физика
Электротехника
Искусство
Термех
Задачи
Информатика
Контрольная
Лаба

Графика

Курсовая
Математика
Чертежи

Реактор

Энергетика
Сопромат
Электроника

Способ вращения вокруг проецирующей прямой

В процессе вращения геометрической фигуры каждая ее точка описывает в пространстве окружность, плоскость которой перпендикулярна к оси вращения, а центр – в точке пересечения оси и этой плоскости (Рис.55). Если ось вращения – проецирующая прямая и, соответственно, плоскость вращения – плоскость уровня, то следует вывод:

Траектория вращения точки на плоскость, перпендикулярную к оси вращения, проецируется без искажения, а на плоскость, параллельную оси, – в виде прямой линии, параллельной оси проекций (Рис.56).

Способ может быть использован для всех 4-х задач преобразования. Метрические задачи Метрическими называются задачи, в которых приходится определять значения измеряемых величин - измерять величину угла между' двумя прямыми и расстояние между двумя точками. К метрическим относятся также задачи на построение угла и отрезка с наперед заданным соответственно градусной и линейной величины.

Пример (Рис.57). Спроецировать отрезок  в натуральную величину и – в точку. Для первого вращения использовать заданную ось . Для второго вращения ось j задать самостоятельно.

Решение:

1) Повернуть отрезок  вокруг оси i до положения фронтали

2) Через один из концов отрезка задать ось вращения  и повернуть отрезок  в положение горизонтально проецирующей прямой

Основные задачи преобразования

Пример. Спроецировать отрезок  в натуральную величину и в точку. (1 и 2 задачи преобразования).равную длине самого отрезка, так как в новой системе плоскостей прямая есть линия уровня.

Способ прямоугольного треугольника применяется в задачах, в которых требуется определить натуральную величину отрезка, разность координат концов отрезка, углы наклона его к плоскостям проекций и так далее. Посмотрим на способ прямоугольного треугольника как частный случай замены плоскостей проекций. Это тот случай определения длины отрезка, когда один из его концов принадлежит плоскости проекций, а новая плоскость проекций проводится через сам отрезок (Рис.58). На чертеже это новая ось, совпадающая с проекцией отрезка. При этом искомая величина отрезка окажется равной гипотенузе прямоугольного треугольника, один из катетов которого есть проекция отрезка. Помимо длины треугольник содержит в себе и другие сведения об отрезке.

Параллельность и перпендикулярность геометрических фигур Параллельность прямых и плоскостей Две плоскости параллельны, если две не параллельные прямые одной плоскости параллельны, соответственно, двум прямым другой плоскости.

Перпендикулярность прямых и плоскостей. Через любую точку в пространстве можно провести бесконечное число прямых, пересекающих линию  или скрещивающихся с ней под прямым углом. Но не все прямые, углы проецируются без искажения. Поэтому для проведения перпендикуляров предпочтительно задавать линии уровня.

Линия наибольшего наклона на плоскости


Полупроводники