Общие свойства гармонических колебаний. Задачи для самостоятельного решения Хотите раскрепощеных знакомств, снимайте барышень с оригинальной конституцией. Недорогие проститутки на сайте http://nedorogieprostitutkisaratova.ru/ станут идеальным выбором. Снимайте сами и приводите родных друзей и вечеринка холостяков не пройдет безотрадно и уныло. | Танец живота - это самая запрашиваемая услуга, а претворят в действительность всё шаловливые безотказкиУлан-Удэ http://ulan-ude.prostitutki.toys/sex-services/tanets-zhivota/,так что возьмите для себя эту или запросите иную услугу и блаженство вам будет обеспечено 100%.

Физика колебаний Электромагнитные волны

Свет как электромагнитная волна. Скорость света. Интерференция света. Когерентность. Дифракция света. Дифракционная решетка. Поляризация света. Законы отражения и преломления света. Полное внутреннее отражение. Дисперсия света. Различные виды электромагнитных излучений и их практическое применение. Формула тонкой линзы. Оптические приборы. Разрешающая способность оптических приборов.

Затухающие колебания.

 У реального осциллятора всегда есть потери колебательной энергии. Поэтому свободные колебания будут затухающими (не гармоническими). В частности, учет сил вязкого трения (Fc = r×) для механического осциллятора или сопротивления электрических контуров (U = RI = R) приводит к дифференциальному уравнению типа:

  , (4.1)

где b – новая константа называемая коэффициентом затухания, w0 – собственная частота осциллятора в отсутствии затухания. Вид решения этого уравнения как раз и зависит от соотношения констант w0 и b, а их значения определяются параметрами конкретной колебательной системы.

1) Для случая b < w0 (малое затухание) его решением является функция:

, (4.2)

где  - частота затухающих колебаний. Как видим колебания осциллятора напоминают гармонические, но с постепенно убывающей по экспоненциальному закону амплитудой. Для описания этого убывания принято использовать следующие величины:

Переходные процессы в электрических сетях Понятие переходного процесса При изучении предыдущего материала рассматривались установившиеся режимы работы электрических цепей с сосредоточенными параметрами, т.е. режимы, которые устанавливаются в цепи при неизменных напряжении, токе, сопротивлении и др.

a) Время релаксации амплитуды tA – время уменьшения амплитуды колебаний в e раз.

, откуда tA = 1/b. (4.3)

б) Количество колебаний, за которое амплитуда уменьшится в e раз Ne :

. (4.4)

в) Логарифмический декремент затухания g – логарифм отношения амплитуд двух последовательных колебаний:

 . (4.5)

Свойства и строение жидкостей. Жидкое состояние занимает промежуточное положение между газами и твердыми телами. В расположении частиц жидкости наблюдается так называемый ближний порядок. Это означает, что по отношению к любой частице расположение ближайших к ней соседей является упорядоченным. Однако по мере удаления от данной частицы порядок в расположении частиц довольно быстро исчезает.

г) Добротность колебательной системы Q:

  . (4.6)

Можно показать, что при bT << 1 добротность 

  , (4.7)

где – W(t) запасенная осциллятором энергия, DW(t,T) - потери энергии за период колебаний.


2) Большое затухание реализуется при b > w0. Решение уравнения (4.1) имеет в этом случае вид:

,  (4.8)

где  , , А и В – константы, зависящие от начальных условий. Графически эта функция представлена на рис.4.1. Очевидно, такой процесс уже не является колебательным. Его принято называть релаксацией.

3) Наконец, случай b  = w0 соответствует “критическому режиму”, при котором релаксация происходит по закону:

  (4.9)

Потенциальная энергия:

упругодеформированного тела (работа Епот = А = k х2/2 ;

упругой силы)

гравитационного взаимодействия двух тел Епот = -G m1m2/r ;

тела в однородном поле тяготения Епот = mgh .

Кинетическая энергия поступательного Екин = mv2/2 = P2/2m

движения тела

Момент инерции материальной точки J = mr2

массой m на расстоянии r от оси вращения

Моменты инерции некоторых тел массы m

относительно оси вращения проходящей

через центр тяжести:

полого цилиндра (колеса) радиуса R J = m R2;

сплошного цилиндра (диска ) радиуса R J = mR2/2;

шара радиуса R J = 0.4 mR2;

стержня длиной l, если ось ^ стержню J = ml2/12;

тела относительно произвольной оси - J = J0 + md2.

(теорема Штейнера)

Момент силы относительно оси вращения М = [ r F ]

Момент количества движения L = Jw

Основное уравнение динамики вращательного M = d L/dt = d(Jw)/dt

движения твердого тела

то же для J = const M = J dw/dt = Je

Закон сохранения момента количества å Jiwi = const

движения i

Задача В условиях предыдущей задачи определить параметры затухающих колебаний в системе: а) время релаксации амплитуды (tA); б) количество колебаний, за которое амплитуда уменьшится в e раз (Ne); в) логарифмический декремент затухания g ;

Таким образом оказалось, что добротность равна числу колебаний осциллятора, за которое амплитуда уменьшается в 23 раза.

Задача При какой величине коэффициента вязкости r в устройстве, рассмотренном в задачах 4.1-4.3, реализуется критический режим. Определить зависимость смещения от времени в критическом режиме, если в начальный момент времени телу в положении равновесия сообщают скорость V0 = 1 м/с.

Решение Критический режим колебаний реализуется при b = w0 = 10 с-1. Для рассматриваемой колебательной системы:

  200 кг/с.

 Общее решение для критического режима может быть записано в виде:

.

Начальные условия:

В представленных выше задачах (4.1 – 4.6) затухание колебаний обусловлено наличием вязкого трения. Колебания в системе с “сухим трением” рассмотрим на примере следующей задачи.

Задача

На горизонтальном столе лежит брусок массы m = 0,5 кг, прикрепленный горизонтальной пружиной к стене. Коэффициент трения скольжения бруска о поверхность стола равен m = 0,1. Брусок сместили по оси Х так, что пружина рас­тянулась на x0 = 6,3 см, и затем отпустили. Жесткость пружинки k = 100 Н/м, а ее масса пренебрежимо мала.

а) Найти число колебаний, которое совершит брусок до остановки.

б) Построить график зависимости от времени смещения бруска от начального положения х(t);

Движение бруска от положения с координатой х(1) вправо. ()

В уравнении движения изменится лишь знак слагаемого m×mg в правой части

 -kx – m×mg.

После аналогичных переобозначений приходим к решению для второго этапа движения ( обозначим его x(2)):

.

Отметим, что отсчет времени в этой записи решения следует начинать от начала данного этапа движения. A1 = x1 + x0 = - 4,8 см. Частота колебаний, конечно, прежняя.

К концу второго этапа движения координата тела окажется равной:

  4,3 см.

Музыкальный камертон имеет собственную частоту колебаний n = 1000 Гц. Через какое время громкость его звучания уменьшится в п = 106 раз, если логарифмический декремент затухания равен g = 0,0006?

Последовательный резонансный колебательный контур состоит из конденсатора емкости С, катушки индуктивности L, сопротивления, равного критическому для данного конту­ра и ключа. При разомкнутом ключе конденсатор зарядили до на­пряжения U0 после чего ключ замкнули. Найдите ток I в контуре как функцию времени t. Чему равна при этом максимальная сила тока в контуре Imax?

Найдите закон изменения заряда на конденсаторе для контура, показанного на рисунке. Параметры контура С, L и R считать известными. Определите, при каком значении активного сопротивления R затухающие колеба­ния переходят в релаксацию.

Весьма наглядными амплитудные и фазовые соотношения между колебаниями, делает векторная форма представления колебаний. В частности, она позволяет качественно и количественно описывать вынужденные колебания. Каждой гармонической функции можно сопоставить вектор на плоскости, длина которого равна амплитуде колебания, а полярный угол – его фазе. Для гармонических колебаний этот вектор вращается относительно начала координат (точки О) против часовой стрелки с угловой скоростью w, равной частоте колебаний. Проекция вектора на ось Х и дает значение гармонической функции.

Для определения амплитуды вынужденных колебаний А и фазового сдвига a достаточно провести сложение векторов

 

Свободные колебания железного стержня, подвешенного на пружине, происходят с частотой wс = 20 рад×с-1, причем амплитуда колебаний уменьшается в h = 5 раз в течение вре­мени tη = ln5 » 1,61 с. Вблизи нижнего конца стержня помещена катушка, питаемая переменным током (см. рисунок). Считая, что амплитуда вынуждающей силы неизменна, найти:

а) коэффициент затухания b,

б) число колебаний Ne, за которые амплитуда уменьшается в е раз и добротность Q, в) при какой частоте тока через катушку wрт колебания стержня достигнут наибольшей амплитуды?

Решение

На вопросы (а) – (б) легко ответить, исходя из сведений о затухающих колебаниях:

В условиях рассматриваемой задачи мм.

Приведем также точный вид амплитудной резонансной кривой для рассмотренного случая вынужденных колебаний. Горизонтальным пунктиром указан уровень амплитуды вынужденных колебаний в  раз меньший резонансного (что соответствует уменьшению колебательной энергии в 2 раза). Он определяет “ширину резонансной кривой” Dw. Нетрудно показать, что Dw = 2b и понятие добротности получает новую трактовку:

.  (5.10)

Для колебательной системы, описанной в предыдущей задаче, построить зависимости от частоты амплитуды вынужденных колебаний, амплитуд поглощения Ап и дисперсии Ад.

Доказать, что при вынужденных колебаниях экстремумы амплитуды дисперсии наблюдаются при частотах вынуждающего воздействия ω @ ωр ± β.

Частота свободных колебаний некоторой си­стемы wс = 50,0 рад×с-1, резонансная частота wр = 49,9 рад×с-1. Определить добротность Q этой системы.

Найти резонансную частоту wр для некоторого механического осциллятора, если амплитуды смещений при вынужденных колебаниях этого осциллятора одинаковы при частотах w1 = 20 рад×с-1 и w2 = 40 рад×с-1.

Определить частоту w*р, соответствующую резонансу скорости некоторого механического осциллятора (когда амплитуда скорости колеблющегося тела максимальна), если амплитуды скорости при частотах вынуждающей силы w1 = 10 рад×с-1 и w2 = 40 рад×с-1 одинаковы.

При некоторой скорости движения поезда его вагоны особенно сильно раскачиваются на рессорах в результате периодических толчков колес о стыки рельс. Когда поезд стоит на станции, рессоры деформированы под нагрузкой вагонов на Dх = 10 см. Длина рельс l = 12,5 м. Определить по этим данным скорость движения поезда.

На крутильный маятник, описанный в задаче 2.10, действует внешняя сила, момент которой меняется по закону N(t) = Nm×coswt. Определить работу сил трения, действующих в системе, за время, равное периоду колебаний. Установившиеся вынужденные колебания маятника происходят по закону: j = jm cos (wt - a).

Грузик массы m = 100 г подвешен на невесомой пружинке с жесткостью k = 32,4 Н/м. Под действием вынуждающей вертикальной гармонической силы грузик совершает установившиеся колебания с частотой w = 17 рад×с-1. При этом колебания шарика отстают по фазе от вынуждаю­щей силы на a = p/4. Определить добротность данного осциллятора.

 

Индукция магнитного поля. Сила Ампера. Сила Лоренца. Магнитный поток. Закон электромагнитной индукции Фарадея. Правило Ленца. Электроизмерительные приборы. Самоиндукция. Индуктивность. Энергия магнитного поля. Магнитные свойства вещества. Постулаты специальной теории относительности Эйнштейна. Пространство и время в специальной теории относительности. Полная энергия. Энергия покоя. Релятивистский импульс. Связь полной энергии с импульсом и массой тела. Дефект массы и энергия связи.
Переменный ток