Функции и их графики Непрерывность функций и точки разрыва

Термех
Лаба

Графика

Чертежи

Реактор

Электроника

Основные обозначения и определения

Всюду в тексте учебника мы будем использовать общепринятые обозначения, те, что используются и в школьных учебниках. В частности,
$ \mathbb{R}$ означает числовую прямую (множество всех вещественных чисел);
$ \mathbb{N}$ означает множество натуральных чисел $ \{1;2;3;4;\dots\}$;
$ \mathbb{Z}$ означает множество всех целых чисел $ \{\dots;-3;-2;-1;0;1;2;3;\dots\}$;

$ \varnothing $ означает пустое множество; по определению, в нём нет ни одного элемента;
$ [a;b]$, $ [a;b)$, $ (a;b]$ и $ (a;b)$, где $ a\in\mathbb{R}$, $ b\in\mathbb{R}$, соответственно,-- замкнутые, полуоткрытые и открытые промежутки: квадратная скобка означает, что соответствующий конец промежутка включается в множество, а круглая скобка-- что не включается;
$ (-\infty;b]$, $ (-\infty;b)$, $ (a;+\infty)$ и $ [a;+\infty)$, где $ a\in\mathbb{R}$, $ b\in\mathbb{R}$-- замкнутые и открытые лучи (бесконечные промежутки);
$ (-\infty;+\infty)$-- числовая прямая, то же, что и $ \mathbb{R}$;

Неполные уравнения плоскостей Если в уравнении плоскости  какие-либо из коэффициентов равны нулю, то получится неполное уравнение плоскости.
$ A\cup B$-- пересечение (общая часть) множеств $ A$ и $ B$;
$ A\cap B$-- объединение множеств $ A$ и $ B$ (все точки из $ A$ и все точки из $ B$);
$ A\diagdown B$-- множество тех элементов из $ A$, которые не принадлежат $ B$; Диффенцируемость ФНП Примеры решения и оформления задач контрольной работы
$ A\sbs B$-- включение $ A$ в $ B$ ($ A$-- это часть $ B$);
$ x\in A$-- принадлежность элемента $ x$ множеству $ A$ ($ x$ принадлежит $ A$);
$ x\notin A$-- элемент $ x$ не принадлежит множеству $ A$;
$ \{a;b;\dots;z\}$-- множество, состоящее из элементов $ a,b,\dots,z$; в частности, $ \{a\}$-- множество из одного элемента $ a$;
$ \{x\in A: P(x)\}$-- множество всех тех элементов $ x$ из $ A$, для которых выполняется свойство $ P(x)$.

пример a

пример b

пример c

пример d

пример e

Первый способ задания функции: табличный

пример

Второй способ задания функции: с помощью формулы

пример a

пример b

Обзор некоторых элементарных функций

Степенная функция

Многочлен

Показательная функция (экспонента)

Логарифмическая функция

Функция синус косинус тангенс

Функция котангенс

Обратные тригонометрические функции

Арифметическая прогрессии

Третий способ задания функции: указание процедуры вычисления

Композиция функций

Обратная функция

Если $ f:A\to B$-- взаимно-однозначное отображение (биекция), то для любого $ y\in B$ однозначно определен такой элемент $ x\in A$, что $ f(x)=y$. Тем самым однозначно определено соответствие $ y\mapsto x$, называемое обратной функцией по отношению к функции $ f$. Обратная функция для $ f$ обозначается $ f^{-1}$.

Примеры и упражнения

Упражнения

Упражнение 1.6 Пусть $ f(x)=\arcsin x$, $ x\in[-1;1]$, $ g(u)=\cos u$, $ u\in\mathbb{R}$. Тогда определены композиции $ f\circ g$ и $ g\circ f$. Докажите, что при $ x\in[-1;1]$ имеет место равенство $ (g\circ f)(x)=\sqrt{1-x^2}$. Выясните также, чему равна функция $ f\circ g$ и каков её график.

 

Непрерывность функций и точки разрыва

Определение непрерывности функции

Определение Пусть функция $ f(x)$ определена на некотором интервале $ (a;b)$, для которого $ x_0$-- внутренняя точка. Функция $ f(x)$ называется непрерывной в точке $ x_0$, если существует предел $ f(x)$ при $ x\to x_0$ и этот предел равен значению $ f(x_0)$, то есть
$\displaystyle \lim_{x\to x_0}f(x)=f(x_0).$

Примеры, упражнения

Определение точек разрыва

Пример   Рассмотрим функцию $ f(x)=\dfrac{\vert x^2-x\vert}{x^2-x}$,

Пример   Функция $ f(x)=\dfrac{1}{x^2}$ имеет при $ x=0$ разрыв второго рода, так как $ f(x)\to+\infty$ при $ x\to0+$ и  

Пример   Рассмотрим функцию $ f(x)$, заданную равенством $\displaystyle f(x)=\lim_{n\to\infty}\cos^nx.$

Свойства функций, непрерывных в точке

   Теорема Пусть функции $ f(x)$ и $ g(x)$ непрерывны в точке $ x_0$. Тогда функции $ h_1(x)=f(x)+g(x)$, $ h_2(x)=f(x)-g(x)$, $ h_3(x)=f(x)g(x)$ непрерывны в точке $ x_0$. Если $ g(x_0)\ne0$, то функция $ h_4(x)=\dfrac{f(x)}{g(x)}$ также непрерывна в точке $ x_0$.

Непрерывность функции на интервале и на отрезке

Определение

Пример   Рассмотрим функцию $ f(x)=\cos x-x$ на отрезке $ [0;\frac{\pi}{2}]$.

Теорема об ограниченности непрерывной функции

Теорема о достижении экстремума непрерывной функцией

Равномерная непрерывность

Примеры, упражнения

Непрерывность обратной функции

Теорема Пусть $ f$ -- непрерывная монотонная функция, $ \mathcal{D}(f)=[a;b]$, $ \mathcal{E}(f)=[c;d]$. Тогда обратная к $ f$ функция $ {\varphi}$ непрерывна на отрезке $ [c;d]$.

Гиперболические функции и ареа-функции

Гиперболическим синусом называется функция $\displaystyle \mathop{\rm sh}\nolimits x=\frac{1}{2}(e^x-e^{-x}).$
Гиперболическим косинусом называется функция $\displaystyle \mathop{\rm ch}\nolimits x=\frac{1}{2}(e^x+e^{-x}).$
Гиперболическим тангенсом называется функция $\displaystyle \mathop{\rm th}\nolimits x=\frac{e^x-e^{-x}}{e^x+e^{-x}}=\dfrac{\mathop{\rm sh}\nolimits x}{\mathop{\rm ch}\nolimits x}.$
Гиперболическим котангенсом называется функция $\displaystyle \mathop{\rm cth}\nolimits x=\frac{e^x+e^{-x}}{e^x-e^{-x}}=\dfrac{...
...\nolimits x}{\mathop{\rm sh}\nolimits x}=\dfrac{1}{\mathop{\rm th}\nolimits x}.$

Примеры, упражнения

Примеры и упражнения

Пределы при разных условиях. Некоторые частные случаи

Пример

Пример

Общее определение предела

Пример

Замена переменного и преобразование базы при такой замене

Пример

Пример

Бесконечно малые и локально ограниченные величины и их свойства

Пример

Пример

Пример

Общие свойства пределов

Замечание

примеры

примеры

Упражнение

Следствие

Первый и второй замечательные пределы

Пример

Теорема

Упражнение

Бесконечно большие величины и бесконечные пределы

Пример

Использование непрерывности функций при вычислении пределов

Определения

Примеры

Сравнение бесконечно малых

Пример

Пример

Примеры

Таблица эквивалентных бесконечно малых

Пример

Упражнения на вычисление пределов

Формула Тейлора представления числовой функции многочленом

 

Многочлен Тейлора

Коэффициенты Тейлора

Остаток в формуле Тейлора и его оценка

Остаток в формуле Тейлора в форме Лагранжа

Формула Тейлора для некоторых элементарных функций

Упражнение

Оценки ошибок в формулах приближённого дифференцирования

Примеры

проститутки | индивидуалки москвы

Полупроводники