Пределы, Многочлен Тейлора

Электротехника решение задач
Расчет электротехнических устройств
Проводниковые материалы
Полупроводники
Электропроводность полупроводников
Информатика
Курс лекций по информатике
Физика
Решение задач по физике
Методика решения задач по кинематике
Магнитные цепи
Основы теории электромагнитного поля
Электромагнитные волны
Электродинамика
Искусство
История искусства
Экспрессионизм
Фотоискусство
Скульптура и архитектура
Графика
Инженерная графика
Выполнение графических работ
Оформление чертежей
Построение чертежа в трехмерном
пространстве
Комплексный чертеж
Преобразование комплексного чертежа
Позиционные и метрические задачи
Аксонометрические проекции
Рабочие чертежи
Математика решение задач
Задачи контрольной работы
Функции и их графики
Пределы
Производные
Исследование функций и построение графиков
Векторная алгебра
Аналитическая геометрия
Кривые второго порядка
Матрицы
Математический анализ
Дифференцирование и интегральное исчисление
Методы интегрирования
Примеры решения дифференциальных уравнений
Примеры вычисления интегралов
Вычисление площадей в полярных, параметрических и декартовых координатах
 

 

 

Пределы при разных условиях. Некоторые частные случаи

Пример Пусть $ x_0=0$ и рассматривается функция $ f(x)=2\sin x+1$. Покажем, что $\displaystyle \lim_{x\rightarrow 0}(2\sin x+1)=1.$

Пример Покажем, что предел последовательности $ y_n=\dfrac{1}{n^2}$ равен 0.

Общее определение предела

Определение Пусть $ \mathcal{B}$-- некоторая база и функция $ f(x)$ определена во всех точках $ x$ некоторого окончания $ E_0$ базы $ \mathcal{B}$ (и, значит, определена во всех точках более далёких окончаний $ E\sbs E_0$). Число $ L$ называется пределом функции $ f(x)$ по базе $ \mathcal{B}$ (или при базе $ \mathcal{B}$) и обозначается $\displaystyle L=\lim_{\mathcal{B}}f(x),$ Реальная домашняя порно съемка с русскими девчонками

Поверхности второго порядка Цилиндрической поверхностью называется поверхность, составленная из всех прямых, пересекающих данную линию L и параллельных данной прямой . Линия L при этом называется направляющей цилиндрической поверхности, а каждая из прямых, составляющих поверхность и параллельных прямой , – ее образующей

Пример

Замена переменного и преобразование базы при такой замене интегрирование подстановкой Примеры решения и оформления задач контрольной работы

Бесконечно малые и локально ограниченные величины и их свойства

В этом разделе мы изучим свойства бесконечно малых величин, то есть величин, стремящихся к 0. В следующих разделах на этой основе мы будем изучать свойства величин, имеющих произвольное значение предела.

Определение Функция $ {\alpha}(x)$ называется бесконечно малой величиной при базе $ \mathcal{B}$, если её предел при данной базе равен 0, то есть $ {\alpha}\xrightarrow {\mathcal{B}}0$.

Общие свойства пределов

  • Замечание
  • примеры
  • примеры
  • Упражнение
  • Следствие Зарубежное искусство История современной архитектуры Запада писалась параллельно с её становлением. Лучшие зодчие столетия одновременно были теоретиками - исследователями и комментаторами процессов её развития. Очень часто именно благодаря полемическому и пропагандистскому дару их новаторские идеи, которые вначале не находили воплощения или реализовались в единичных постройках, всё же обретали признание и получали распространение.

Первый и второй замечательные пределы

 Определение   Первым замечательным пределом называется предел $\displaystyle \lim_{x\to0}\frac{\sin x}{x}.$

 Определение   Вторым замечательным пределом называется предел $\displaystyle e=\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^n.$

Бесконечно большие величины и бесконечные пределы

Пример

Использование непрерывности функций при вычислении пределов

   Определение Пусть $ x_0$ -- внутренняя точка области определения функции $ f(x)$, то есть функция $ f(x)$ определена при всех $ x$ из некоторого интервала $ (x_0-{\delta};x_0+{\delta})$ ( $ {\delta}>0$), окружающего точку $ x_0$. Функция $ f(x)$ называется непрерывной в точке $ x_0$, если
$\displaystyle \lim_{x\to x_0}f(x)=f(x_0)$

Сравнение бесконечно малых

Таблица эквивалентных бесконечно малых при

Пример

Упражнения на вычисление пределов

Формула Тейлора представления числовой функции многочленом

Многочлен Тейлора

Коэффициенты Тейлора

Остаток в формуле Тейлора и его оценка

Остаток в формуле Тейлора в форме Лагранжа

Формула Тейлора для некоторых элементарных функций

Формула Тейлора для экспоненты такова: $\displaystyle e^x=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\ldots+\frac{x^n}{n!}+R_n(x).$

Получаем формулу Тейлора для синуса: $\displaystyle \sin x=x-\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+\ldots+
(-1)^{k-1}\dfrac{x^{2k-1}}{(2k-1)!}+R_{2k}(x).$

Упражнение

Оценки ошибок в формулах приближённого дифференцирования

Примеры

        Пример   Рассмотрим функцию $ f(x)=xe^{x^2}$. Найдём её разложение по формуле Тейлора в точке $ x_0=0$. Начнём с того, что напишем ранее найденное разложение для экспоненты,
$\displaystyle e^z=1+z+\frac{z^2}{2!}+\frac{z^3}{3!}+\ldots+\frac{z^n}{n!}+R_n(z),$
и положим в нём $ z=x^2$:
$\displaystyle e^{x^2}=1+x^2+\frac{x^4}{2!}+\frac{x^6}{3!}+\ldots+\frac{x^{2n}}{n!}+R_n(x^2).
$
Теперь умножим левую и правую части этой формулы на $ x$:
$\displaystyle xe^{x^2}=x+x^3+\frac{x^5}{2!}+\frac{x^7}{3!}+\ldots+\frac{x^{2n+1}}{n!}
+xR_n(x^2).$
Заметим, что бесконечно малое при $ x\to0$ выражение $ \tilde R(x)=xR_n(x^2)$ имеет тот же или больший порядок малости, как $ x^{2(n+1)+1}=x^{2n+3}$, и поэтому может рассматриваться как остаточный член $ R_{2n+2}(x)$ в формуле Тейлора для $ f(x)$, а предыдущие слагаемые в правой части формулы -- как многочлен Тейлора данной функции. Так что её искомое разложение найдено.     

Разберём теперь пример того, как полученные разложения элементарных функций можно использовать для раскрытия некоторых неопределённостей.

        Пример   Найдём предел
$\displaystyle \lim_{x\to0}\dfrac{e^x-1-x}{\sqrt{1-x}-\cos\sqrt{x}}.$
Для начала найдём разложение по формуле Тейлора в точке 0 для числителя:
$\displaystyle e^x-1-x=-1-x+1+x+\frac{x^2}{2}+r_3(x)=
\frac{x^2}{2}+r_3(x),$
где через $ r_3(x)$ обозначен остаточный член, имеющий тот же порядок малости, что и $ x^3$. Разложение для знаменателя имеет вид:
$\displaystyle \sqrt{1-x}-\cos\sqrt{x}=(1-\frac{x}{2}-\frac{x^2}{8}+s_3(x))-
(1-\frac{x}{2}-\frac{x^2}{24}+t_3(x)),$
где остаточные члены $ s_3(x)$ и $ t_3(x)$ тоже имеют тот же порядок малости, что и $ x^3$, при $ x\to0$. Выполняя приведение подобных членов, получаем, что знаменатель равен
$\displaystyle -(\frac{1}{8}+\frac{1}{24})x^2+s_3(x)-t_3(x).$
Итак,
$\displaystyle \lim_{x\to0}\dfrac{e^x-1-x}{\sqrt{1-x}-\cos\sqrt{x}}=
 \lim_{x\to0}\dfrac{\frac{x^2}{2}+r_3(x)}
 {-(\frac{1}{8}+\frac{1}{24})x^2+s_3(x)-t_3(x)}=$   
$\displaystyle =\lim_{x\to0}\dfrac{\frac{1}{2}+\frac{r_3(x)}{x^2}}
 {-(\frac{1}{...
...rac{s_3(x)-t_3(x)}{x^2}}=
 \dfrac{\frac{1}{2}}{-(\frac{1}{8}+\frac{1}{24})}=-3.$   
/TD>
Построение чертежей http://termexn.ru/avtocad/