[an error occurred while processing this directive]

Интегрирование рациональных дробей

 

  Для того, чтобы проинтегрировать рациональную дробь необходимо разложить ее на элементарные дроби.

 Теорема: Если  - правильная рациональная дробь, знаменатель P(x) которой представлен в виде произведения линейных и квадратичных множителей (отметим, что любой многочлен с действительными коэффициентами может быть представлен в таком виде: P(x) = (x - a)a…(x - b)b(x2 + px + q)l…(x2 + rx + s)m ), то эта дробь может быть разложена на элементарные по следующей схеме:

 

где Ai, Bi, Mi, Ni, Ri, Si – некоторые постоянные величины.

 При интегрировании рациональных дробей прибегают к разложению исходной дроби на элементарные. Для нахождения величин Ai, Bi, Mi, Ni, Ri, Si применяют так называемый метод неопределенных коэффициентов, суть которого состоит в том, что для того, чтобы два многочлена были тождественно равны, необходимо и достаточно, чтобы были равны коэффициенты при одинаковых степенях х.

  Применение этого метода рассмотрим на конкретном примере.

 

 Пример.

Т.к.  (, то

Приводя к общему знаменателю и приравнивая соответствующие числители, получаем:

 

 

 

 

 

 

  

 

Итого:

Космические материалы атомной отрасли