Конспекты и лекции по сопромату

Термех
Лаба

Графика

Чертежи

Реактор

Электроника

Изложены основные сведения по всем вопросам сопротивления материалов. Расчетные формулы даны без выводов, но с необходимыми пояснениями, облегчающими их практическое применение.

Для стержня со ступенчатым изменением площади Ai и нормальной силы Ni удлинения  вычисляются на каждом участке с постоянными Ni и Ai, а результаты алгебраически суммируются:

  (1.7).

Построение эпюр нормальных сил и напряжений для брусьев в статически определимых задачах.

Для определения внутренних усилий разбиваем брус с прямолинейной осью на четыре участка.

Эпюра нормальных сил показывает, что первый и четвертый участок подвержены растяжению, а второй и третий – сжатию.

Дан прямой стальной стержень кусочно - постоянного сечения, для которого a = 0,4 м, а площади поперечных сечений указаны на рис. 1.1.6, а.

Построить эпюру нормальных сил для стержня замоноличенного в массив (рис. 1.1.8, а), предполагая, что интенсивность сил трения постоянна по длине a.

Определить площади верхнего Ав0 и нижнего Ав1 сечений, а также вес  кладки из глиняного кирпича в форме бруса равного сопротивления сжатию, если на верхнее сечение действует сосредоточенная сила F = 3000 кН, высота стойки l = 20 м, R = 1,5 МПа; = 1,00.

Определить допускаемую нагрузку Fadm растягиваемого стального листа, ослабленного отверстиями d = 2 см (рис. 1.1.12).

  • Общие понятия о деформации изгиба. Весьма часто стержни подвергаются действию поперечной нагрузки или внешних пар При этом в поперечных сечениях стержня возникают изгибающие моменты, т.е. внутренние моменты, плоскость действия которых перпендикулярна плоскости поперечного сечения стержня.

Силы и силовые зависимости

Перемещения поперечных сечений брусьев в статически определимых задачах.

Определить перемещение нижнего конца стержня, изображенного на рис. 1.1.3, а. Необходимые для расчета данные взять из примера 1.1.3.

Алюминиевый стержень круглого поперечного сечения диаметром 10 см растягивается силой F. Найти величину допускаемой силы Fadm, если допускаемое уменьшение начального диаметра =0,002см; коэффициент Пуассона = 0,35.

Абсолютно жесткий брус АС прикреплен в точке А к неподвижному шарниру, а в точке В поддерживается стальным стержнем ВD.

Определить площади поперечных сечений стальных элементов АВ и СВ кронштейна, показанного на рис. 1.3.6, если F = 5 т, , ..

Статически неопределимыми системами называются системы, для которых реакции связей и внутренние усилия не могут быть определены только из уравнений равновесия.

Эпюра нормальных напряжений  показывает, что самое большое сжимающее нормальное напряжение будет в нижнем опорном сечении (КПа), а самое большое растягивающее напряжение – в верхнем опорном сечении (= 154,2 КПа).

Дан прямой стальной стержень кусочно-постоянного сечения, для которого а = 0,4 м, а площади поперечных сечений указаны на рис. 1.1.6, а. При учете действия только собственного веса стального стержня эпюры нормальных сил и напряжений имеют вид, показанный на рис. 1.1.6, б, в.

Определить нормальное напряжение в бетоне и арматуре железобетонной колонны, квадратное поперечное сечение которой показано на рис. 1.4.6, причем h = 30 см, модуль продольной упругости стали , а бетона тяжелого класса В 30 –

Если нижнюю опору не принимать во внимание и вычислить перемещение нижнего торца стержня  при учете сосредоточенной силы F и собственного веса стержня, то будем иметь (см. задачу 1.4.1).

Стержень постоянного поперечного сечения заделан одним концом. Между нижним концом стержня и нижней жесткой опорой имеется зазор, равный  = 0,5 мм (рис. 1.4.8).

Расчеты на растяжение и сжатие статически неопределимых стержневых систем.

Дана плоская шарнирно-стержневая система, состоящая из абсолютно жесткого бруса ВD, опертого на шарнирную опору О (рис. 1.5.2).

Влияние температуры на напряжение и деформации в брусьях.

Абсолютные удлинения крайних стержней возникают от продольной нормальной силы, а абсолютное удлинение среднего стержня равно сумме его температурного удлинения и упругой деформации от продольной силы ND.

Медный стержень с постоянной площадью поперечного сечения А = 10 см2 загружен сосредоточенными силами F = 1000 кг (рис.1.4.3) и нагрет на = 20о.

Геометрические характеристики плоских сечений Геометрическими характеристиками плоских сечений являются площадь, статические моменты плоских сечений, положение центра тяжести, моменты инерции и моменты сопротивления.

. Изменение положительного направления оси у вызывает изменение знака статического момента Sx.

Определить координаты центра тяжести плоского сечения, ограниченного осью х, квадратной параболой x = hy2/b2 и прямой линией х = h (рис. 2.1.6).

Определить статические моменты Sx и Sy сложного поперечного сечения (рис. 2.1.10).

 Если поперечное сечение не содержит осей симметрии, то случайные оси х, у ставим так, чтобы все точки поперечного сечения находились в 1-м квадранте.

Осевые моменты инерции плоских сечений простой формы Осевым моментом инерции плоского сечения относительно некоторой оси называется взятая по всей его площади А сумма произведений элементарных площадок dA на квадраты их расстояний от этой оси.

Ось максимум всегда составляет меньший угол с той из осей (у или х), относительно которой осевой момент инерции имеет большее значение.

 Из подобия треугольников находим (рис.2.2.6):  откуда  следовательно, площадь элементарной площадки dA будет .

Определить статические моменты, осевые моменты инерции, центробежные моменты инерции и положение главных осей неравнополочного уголка 1208010 относительно осей х, у и относительно центральных осей хс, ус.

Определить расстояние а между элементами пакета, состоящего из трех досок размером , при условии равенства главных моментов инерции относительно осей х и у (рис. 2.2.11).

Осевые моменты инерции плоских составных сечений.

Наносим оси хс, ус, которые проходят через центр тяжести С всего составного поперечного сечения и определяем расстояния между осями хс и хi, а также между осями ус и уi:а1 = у1 – ус = 24,8 – 17,5 = 7,3 см; b1 = х1 – хс = 25 – 27,4 = –2,4 см;

Значение центробежного момента  можно вычислить, используя фор-мулу (2.2.6). Для этого рас-смотрим рис. 2.3.2, в. Разобьем уголок на два прямоугольника с  и.

Вычислить главные моменты инерции для составного поперечного сечения, представленного на рис. 2.1.12.

Сдвиг, кручение.

Расчет болтовых и заклепочных соединений В зависимости от числа срезов одного болта или одной заклепки их называют односрезными, двухсрезными и т.д. (рис. 3.1.3, а, б).

Болты или заклепки, работающие одновременно на срез и растяжение, следует проверять отдельно на срез и на растяжение.

Привязка линии размещения болтов (заклепок) в один ряд находится из условия: m = b/2 + 5 мм.

Рассчитать количество заклепок диаметром d = 4 мм, необходимое для соединения профилей толщиной 1мм с фасонкой толщиной t = 2 мм (рис. 3.1.12). Сила F = 35 кН, расчетные сопротивления материала заклепок, профилей и косынки (дюралюминий) равны: на срез Rbs = 105 МПа, на смятие Rbр = 300 МПа, коэффициент условий работы соединения γb = 0,95.

Определить длину флангового сварного шва, необходимую для соединения двумя накладками с двух сторон стальных листов, растягиваемых усилием F = = 500 кН (рис. 3.1.17).

Определить длину l призматической шпонки, с помощью которой соединены вал 1 диаметром 0,036 м с колесом 2 (рис. 3.1.23).

Определить напряжения среза τср и смятия σсм в этом соединении, если сдвигающее усилие F = 240 кН.

Кручение Кручением называют деформацию, возникающую при действии на стержень пары сил, расположенной в плоскости, перпендикулярной к его оси (рис. 3.2.1, а).

Расчет напряжений и деформаций валов В поперечных сечениях вала при кручении действуют только касательные напряжения, которые вычисляются по формуле:

  (3.2.3).

Найти наибольшее касательное напряжение и угол закручивания плеча ОВ, имеющего диаметр d = 8 мм и длину l = =25мм.

Для вала, показанного на рис. 3.2.9, построить эпюру изменения по длине вала величины касательного напряжения в крайней точке поперечного сечения.

Расчеты на прочность и жесткость валов круглого и кольцевого сечений.

Материал вала – сталь, модуль сдвига G = 8·104 МПа, расчетное сопротивление на срез Rs = 30 МПа, допускаемый угол закручивания .

Для вала, показанного на рис. 3.2.10, построить эпюру крутящих моментов, подобрать сплошное круглое и кольцевое сечения по участкам из условий прочности и жесткости.

Определяем наибольшие касательные напряжения на каждом участке, используя формулу (3.2.4):.

Статически неопределимые задачи на кручение Как известно, статически неопределимыми называют задачи, в которых число неизвестных опорных реакций или число внутренних усилий превышает число возможных уравнений статики.

Задача 3.2.27. Построить эпюру Т и произвести ее проверку для вала, показанного на рис. 3.2.17. Ответ: Т1 = 25 Нּм; Т2 = 225 Нּм, Т3 = –175 Нּм.

Диаметр стержня в пределах I и II участков будем обозначать d1, а в пределах участка III – d4. Согласно условию задачи между d1 и d4, существует соотношение (рис. 3.2.18, а):

и , тогда откуда .

Расчет винтовых пружин с малым шагом Приведем основные сведения по элементарной теории расчета на прочность и жесткость витых цилиндрических пружин с постоянным и малым шагом витка l, при котором угол наклона витка к горизонту мал и можно положить, что cosα 1 (рис. 3.2.19).

Кручение тонкостенных стержней замкнутого профиля Наиболее целесообразными при кручении являются тонкостенные стержни замкнутого профиля.

Плоский поперечный изгиб Изгиб представляет собой такую деформацию, при которой происходит искривление оси прямого бруса или изменение кривизны кривого бруса.

Тангенс угла между касательной к линии, ограничивающей эпюру изгибающего момента М и осью эпюры, равен поперечной силе Q.

Определить максимальное нормальное напряжение σx и максимальное касательное напряжение τ, возникающие в поперечных сечениях балки, представленной на рис. 4.2.3.

Определить допускаемый минимальный диаметр d консольной балки (рис. 4.2.4) из стали с Ry = 240 МПа. Принять, что F = 1 кН, l = 1м, =1. Собственный вес балки не учитывать.

Подобрать сечение консольной балки из стальных прокатных профилей (рис. 4.1.16). Материал балки – сталь С255.

Рассмотреть однопролетную деревянную балку прямоугольного поперечного сечения , загруженную равномерно распределенной нагрузкой q

Из эпюр изгибающего момента М и поперечных сил Q очевидно, что наиболее опасное поперечное сечение на опоре (в заделке), где Mz,max = 2ql2 = 720 кН·м, Qmax = 2ql = 120 кН.

Построить эпюры главных напряжений , и эпюру максимальных касательных напряжений  в наиболее опасном с точки зрения главных напряжений прямоугольном поперечном сечении балки, изображенной на рис. 4.2.3.

Дифференциальное уравнение изгиба балок Дифференциальное уравнение изгиба упругой оси балки имеет вид  (4.4.1).

Определить максимальный прогиб однопролетной балки, изображенной на рис. 4.4.2. Жесткость балки на изгиб постоянна и равна EI.

 Получить уравнение изгиба упругой оси консольной балки, нагруженной равномерно распределенной нагрузкой q (рис. 4.4.5). Определить максимальный прогиб балки.

Внешняя нагрузка на балку показана на рис. 4.1.17. Определить вертикальное смещение поперечного сечения в точке С.

Построить эпюру прогибов балки, показанной на рис. 4.1.3, а, приняв, что l = 0,5 м, а интенсивность равномерно распределенной нагрузки q = 10 кН/м.

Расчет балок на жесткость При расчете строительных и машиностроительных конструкций на жесткость (в большинстве случаев по прогибам, по углам поворота) должно соблюдаться условие  (4.5.1).

Подобрать из расчета на прочность главную балку междуэтажного перекрытия двутаврового поперечного сечения и проверить условие жесткости для нее (рис. 4.4.12).

Подобрать сечение двутавровой балки из условия прочности и условия жесткости. При расчетах принять [1/no] = 1/250. Балка показана на рис. 4.5.1. Материал – сталь С255.

Определение перемещений при помощи интеграла Мора Формула для определения перемещений, называемая интегралом Мора, имеет вид  (4.6.1).

Определить вертикальное перемещение точки В консольной балки, изображенной на рис. 4.6.3.

Необходимо учитывать изменение знака в эпюре изгибающих моментов М, поэтому рассматривая эпюру М на рис. 4.1.17 и построив эпюру , согласно рис. 4.6.1 в формуле (4.6.2) для перемножения эпюр первого участка необходимо положить:

Определить горизонтальное смещение хС точки С рамы, изображенной на рис. 4.6.5, а. Жесткость на изгиб всех участков рамы постоянна и равна EI.

Для определения опорных реакций H, RA, RB, MA составим уравнения равновесия: откуда H = 0, далее  тогда  

Определить опорные реакции и построить эпюры изгибающих моментов М и поперечных сил Q для балки с консолью (рис. 4.7.3). Жесткость балки на изгиб постоянна и равна EI.

Определить опорные реакции, построить эпюры изгибающих моментов и поперечных сил для двухпролетной балки, изображенной на рис. 4.7.5. Принять, что F1 = F.

Сварная балка Требуемый момент сопротивления Wzn сварных балок вычисляют по формуле (4.2.7), после чего приступают к компоновке составного сечения.

Установив размеры стенки, определяют ее осевой момент инерции  (4.8.5).

Максимальный изгибающий момент в середине пролета балки составляет   максимальная поперечная сила на опорах:

Проверим касательные напряжения по нейтральной оси поперечного сечения у опоры балки.

Для консольной двутавровой балки, загруженной горизонтальной силой F1 = 0,56 кН и вертикальной силой F2 = 5,84 кН (рис. 5.1.3), построить эпюру нормальных напряжений в защемлении и найти максимальное нормальное напряжение σmax.

Для балки, лежащей на двух опорах и загруженной тремя вертикальными сосредоточенными силами F1 = F3 = 10 кН, F2 = 20 кН и равномерно распределенной горизонтальной нагрузкой q = 24кН/м, требуется подобрать прямоугольное поперечное сечение с отношением сторон .

Внецентренное растяжение и сжатие бруса большой жесткости. Ядро сечения.

Найти допускаемую нагрузку для бруса, показанного на рис. 5.2.4, если расчетные сопротивления материала бруса на растяжение и сжатие равны

Radm,t = 20 МПа; Radm,с = 100 МПа.

Построить эпюру нормальных напряжений и определить положение нейтральной линии в прямоугольном поперечном сечении короткого столба, нагруженного вертикальной сосредоточенной силой F, приложенной так, как показано на рис. 5.2.5.

Для круглого поперечного сечения с радиусом R ядро сечения представляет собой соосный круг меньшего радиуса r = R/4.

На рис. 5.2.14 изображено поперечное сечение бруса и показаны центры тяжести четырех простых элементов, составляющих это поперечное сечение.

Совместное действие изгиба и кручения Для выявления опасного сечения при совместном действии изгиба и кручения строятся эпюры крутящих и изгибающих моментов по правилам глав 3 и 4.

Рассчитать радиус круглого цилиндрического вала с прямой осью, несущего два шкива, весом каждый по 1 кН и с одинаковыми диаметрами D = 0,5 м.

Керамическая труба подвержена действию крутящего момента Т = 0,08 кН·м и изгибающего момента  М = 0,06 кН·м.

Построить эпюры крутящего Мх и изгибающих Му, Мz моментов, нормальных N и поперечных Qy, Qz сил, действующих в поперечных сечениях пространственного ломаного бруса, показанного на рис. 5.3.8, а. Брус состоит из прямолинейных участков, перпендикулярных друг другу.

Все полученные числовые значения откладываем на соответствующих эпюрах. Из полученных эпюр видно, что наиболее опасным поперечным сечением будет сечение на опоре А, в котором действуют N(AB)= N = –1 кН;

Нейтральная линия пересекает ось z в точке с координатами у = 0, zo, тогда из уравнения (в) находим .

Подобрать по III теории прочности (по критерию наибольших касательных напряжений) размеры сплошного прямоугольного поперечного сечения   пространственного стального бруса, изображенного на рис. 5.3.8, а.

Рассмотрим поочередно три точки (1÷3). Будем учитывать только действие моментов Мх, Му, Mz, а действием нормальной N и поперечной Qz сил пренебрежем.

Брус состоит из прямолинейных участков, перпендикулярных друг другу, a = 0,2 м.

Расчет кривых брусьев малой кривизны Если отношение высоты h кривого бруса к его радиусу кривизны Ro существенно меньше единицы (h/Ro < 0,2 ), то считается, что брус имеет малую кривизну.

Найдем вертикальные опорные реакции RA, RB простой балки, показанной на рис. 5.4.1, б. Предположим, что на балку действует та же нагрузка, что и на арку. В этом случае найдем RA = VA , RB = VB.

И наконец, по формулам (5.4.3) находим значения внутренних усилий, возникающих в арке. Например, в сечении х = 0 имеем у = 0,   sinφ = 0,8; cosφ = 0,6; Н = 19,5 т.

Построить эпюры изгибающих моментов Mz, поперечных и нормальных N сил для трехшарнирной параболической арки, показанной на рис. 5.4.3.

Ось эллиптической арки очерчена по кривой.

Расчет толстостенных труб В толстостенных трубах, нагруженных равномерным давлением, напряжения и деформации не изменяются вдоль оси трубы.

Для стальной составной трубы (рис. 5.5.2) заданы: внутренний радиус внутренней трубы а = 7см, внутреннее давление р = 100 МПа, расчетное сопротивление стали Ry = 240 МПа, коэффициент Пуассона ν = 0,3; модуль продольной упругости Е = 2·105 МПа.

Проверка прочности в опасных точках составной трубы, нагруженной внутренним давлением р.

Устойчивость сжатых стержней Наименьшее значение сжимающей силы, при котором сжатый стержень теряет способность сохранять прямолинейную форму равновесия, называется критической силой и обозначается Fcr.

Определить критическую нагрузку для сжатого стального стержня, имеющего прямоугольное поперечное сечение 46 см. Концы стержня шарнирно закреплены. Длина стержня l = 0,8 м.

Как изменится критическая сила, определяемая по формуле Эйлера, если длина стержня увеличится в 2 раза?

Определить критическую силу и критическое напряжение для центрально сжатой стальной стойки двутаврового сечения (двутавр № 33) длиной l = 4 м. Нижний конец стойки защемлен, верхний – шарнирно оперт.

Расчет на устойчивость деревянных конструкций, подверженных центральному сжатию силой N, необходимо выполнять по формуле:  (6.2.4).

Расчет элементов неармированных каменных конструкций при центральном сжатии следует производить по формуле:.

Для стального стержня с заданной формой поперечного сечения (рис. 6.2.1), сжатого силой N = 500 кН, требуется найти размеры поперечного сечения. Материал стержня – сталь C255.

Задача 6.2.4. Подобрать диаметр сплошного стержня из стали С285. Стержень сжат продольной силой N = 20 кН. Концы стержня закреплены шарнирно. Длина стержня l = 100 см, а коэффициент условий работы

Определить величину допускаемой нагрузки на деревянную стойку высотой 5 м и сечением 1822 см. Концы стойки закреплены шарнирно. Материал стойки – сосна с RС = 14 МПа (см. табл. 5).

 Задача 6.2.12. Определить допускаемую продольную силу для чугунной стойки (чугун СЧ 15) диаметром 30 см и длиной 4,5 м. Оба конца стойки соединены с опорами шарнирно,

Расчет на устойчивость систем с одной или двумя степенями свободы при помощи уравнений равновесия.

Элементы системы – бесконечно жесткие. Жесткость упругой связи равна k.

Определение критических сил при помощи энергетического метода Энергетический метод основан на использовании теоремы Лагранжа – Дирехле о полной потенциальной энергии.

Определить критическую силу для прямого стержня, находящегося в упругой среде с коэффициентом податливости, равным k (рис. 6.4.1).

Определить значение критической силы при помощи энергетического метода для абсолютно жесткой системы, изображенной на рис. 6.4.2. Жесткость двух упругих связей – одинакова и обозначена через k.

Действие динамических нагрузок Динамической считается такая нагрузка, положение, направление и интенсивность которой зависят от времени, так что необходимо учитывать силы инерции тела в результате ее действия.

Проверить прочность горизонтального бруса, поднимаемого вверх силой F, приложенной посередине бруса, с ускорением а, равным 2g (рис. 7.1.2, а).

Определить наибольшие нормальные напряжения от изгиба двутавра № 30 длиной l = 10 м, поднимаемого с помощью канатов, прикрепленных в сечениях С и D, с ускорением а, равным 5 м/с2 (рис. 7.1.7). Стенка двутавра при подъеме расположена вертикально.

Стержневая система, показанная на рис. 7.1.9, а, вращается с постоянной угловой скоростью Ω вокруг оси АВС.

Упругий удар Под ударом понимают резкое изменение скорости соприкасающихся тел в течение малого отрезка времени.

Груз весом Р = 2 кН, скользя без трения вдоль стального бруса, падает на приваренную к нему жесткую пластину и вызывает ударное растяжение бруса.

Рассчитать запас прочности балки, если модуль продольной упругости материала балки Е = 104 МПа, а предел прочности при расчете на изгиб RИ = 20 МПа.

Найти максимальное нормальное динамическое напряжение в канате подъемника (рис. 7.2.6), спускающего груз Р = 2·104 Н со скоростью v =1 м/с при внезапном торможении наверху.

Поперечное сечение балки имеет следующие геометрические характеристики: осевой момент инерции Iz = 20 000 см4, осевой момент сопротивления Wz = 200 см3.

Упругие колебания систем с одной степенью свободы Упругими колебаниями называют движения упругих тел, представляющие собой периодические отклонения их относительно положения равновесия.

Учитывая приведенные выше соотношения, можно записать формулы для круговой частоты и периода свободных колебаний, каждая из которых в том или ином случае может оказаться удобной при решении практических задач: (7.3.5)  (7.3.6).

Определить круговую частоту вертикальных симметричных колебаний кузова тележки общим весом Р= 80 кН, укрепленного на двух осях с помощью четырех рессор, каждая из которых имеет жесткость с1 = 2·105 Н/м.

Решение. Как ранее отмечалось, в данном случае масса системы складывается из массы mг груза и приведенной к точке распределенной собственной массы стержня mo , т.е. m = mг + αmо, где mо = ρlA, α = 0,33.

Вынужденные колебания систем с одной степенью свободы К вынужденным колебаниям приводит непрерывное воздействие на механическую систему внешней периодической силы, например, изменяющейся по гармоническому закону.

На двух двутавровых балках № 12 посередине установлен двигатель весом  Q = 7 кН (рис. 7.4.1). Неуравновешенные массы двигателя условно заменены вра-щающимся со скоростью n = 550 об/мин.

Рассчитаем максимальное напряжение sst в среднем сечении балки, нагруженной статически приложенными силами Q /2 и Q1 = qlg,

Используя условия предыдущей задачи (кроме числа оборотов n), установить безопасный по прочности балок режим работы двигателя, т.е. определить допускаемое число оборотов.

Неупругое деформирование В предыдущих главах использовался метод расчета по допускаемым напряжениям.

Определить предельную нагрузку Fu для стержневой системы, показанной на рис. 8.1.1. Предел текучести материала стержней принять = 2900 кг/см2.

 Второй механизм разрушения. Пусть текут стержни 1 и 3, а стержень 2 работает в упругой стадии (рис. 8.1.3, в). Проводим ось б–б, перпендикулярную направлению оси стержня 2.

Дана плоская шарнирно-стержневая система, состоящая из абсолютно жесткого бруса ВD, опертого на шарнирную опору О (рис. 1.5.2). Брус BD прикреплен к двум стержням BB1 и CC1 при помощи шарниров.

Предельная нагрузка для балок Напряженное состояние изгибаемых конструкций (балок) определяется величинами изгибающих моментов.

Консольная балка длиной l = 2 м на свободном конце нагружена сосредоточенной силой Fu. Приняв= 285 МПа, определить предельную нагрузку Fu, если балка имеет постоянное по длине прямоугольное поперечное сечение = 15 см5 см.

Для статически неопределимой балки, изображенной на рис. 8.2.3, найти предельную нагрузку, если предел текучести материала балки= 285 МПа. Балка имеет прямоугольное поперечное сечение = , а l1 = 1 м, l2 = 2 м.

Предельная нагрузка при кручении Предельным состоянием для идеально пластического материала будет такое, при котором касательные напряжения во всех точках поперечного сечения станут равными пределу текучести τу (рис. 8.3.1).

Стальной стержень сплошного круглого сечения жестко закреплен с одного конца, а на другом свободном конце нагружен крутящим моментом Мu = 50 кН·м.

PROGRAM AXE Построчные пояснения C Геометрические характеристики плоских сечений .

Вычисление моментов инерции относительно центральных осей.

Найти координаты центра тяжести и вычислить главные моменты инерции для составного сечения, показанного на рис. 2.1.11.

Построение эпюр прогибов упругой оси балки В разделе 4.4 приводится дифференциальное уравнение изгиба упругой оси балки (4.4.1), интегрируя которое можно найти прогиб произвольного поперечного сечения балки.

Результаты, выдаваемые ЭВМ на печать:

Х= .0 У= .0000Е+00

Х= 20.0 У= -.1891Е-01 /

Используем алгоритм, примененный для составления программы для ЭВМ, рассмотренной в качестве образца (PROGRAM BEAM).

 У к а з а н и е. Уравнение упругой оси балки взять из задачи 4.4.6. Задача 9.2.3. Составить программу для ЭВМ и построить эпюру прогибов консольной балки, изображенной на рис. 4.4.8. Принять q = 1 кН/м, а= 1 м, b = с = 2 м. Балка изготовлена из двутавра № 18. Уравнения изогнутой оси балки для каждого участка взять из ответа к примеру 4.4.7.

У к а з а н и е. Для расчета можно использовать любую из трех предложенных программ. Программы на языке ПЛ-1 применять без каких-либо изменений. В программах на языках Бейсик и Фортран необходимо заменить уравнение оси арки на уравнение окружности (5.4.4), а значение tgφ дать по формуле (5.4.5).

Построить эпюры изгибающих моментов Мz, поперечных Qу/ и нормальных N сил для трехшарнирной параболической арки, показанной на рис. 9.3.3. Уравнение параболической оси арки, значение tgφ и указания к расчету приведены в задаче 9.3.2.

Полупроводники