Проводниковые материалы

Термех
Лаба

Графика

Чертежи

Реактор

Электроника

Элементы зонной теории твердого тела Все тела, в зависимости от их электрических свойств, условно могут быть отнесены к одной из трех групп: 1) проводники; 2) полупроводники; 3) диэлектрики. На макроскопическом уровне разница между этими группами веществ видится в их различной электропроводности при одинаковых условиях. Но возникает вопрос, а почему сильно разнятся электропроводности проводников и диэлектриков, полупроводников и проводников? Ответ на этот вопрос нужно искать в микростроении веществ, относящихся к той или иной группе.

Физическая природа проводимости Зонная теория и опытные данные показывают, что у всех металлов валентная зона заполнена лишь частично и либо соприкасается с зоной проводимости, либо зоны перекрываются. Поэтому, как отмечалось ранее, все металлы и сплавы хорошо проводят электрический ток. Отметим, что электроны, которые могут принимать участие в электрическом токе, называются свободными. Т.к. в металлах валентная зона перекрывается с зоной проводимости, то, следовательно, все валентные электроны могут принимать участие в электрическом токе. Число валентных электронов не зависит от температуры и у всех металлов одного порядка - 10 22 /см 3, а электропроводность отличается иногда в десятки раз, уменьшается с ростом температуры и зависит от содержания даже металлических примесей.

Рассмотрим подробнее влияние на электропроводность нескольких "препятствий" одновременно. "Препятствиями" на пути движения электронов могут быть тепловые отклонения атомов кристаллической решетки от идеальной периодичности, наличие в решетке инородных атомов - примесей, не занятые узлы решетки, атомы, занимающие чужие узлы, и т.д. Очевидно, что каждый вид "препятствий" будет приводить к наличию своего времени релаксации i.

Несовершенства в кристаллах Остановимся подробнее на причинах, которые вызывают рассеяние электронов при их движении в кристалле и которые мы первоначально обозначили термином "препятствия". В кристаллических телах атомы или ионы расположены в определенном порядке, т.е. регулярным образом, с соблюдением периодичности. Такому регулярному строению соответствует внутреннее регулярное электрическое поле. Периодичность в расположении атомов, однако, не означает, что такое расположение атомов наблюдается во всем объеме кристаллического тела. Обычно на практике мы имеем дело с поликристаллическими телами, т.е. с телами, содержащими отдельные зерна или блоки, внутри которых атомы действительно расположены регулярно. Но при переходе от зерна к зерну на границах зерен наблюдается отклонение от регулярности. Такие зерна обычно имеют размеры порядка 10 -6 м или немного более.

Линейные дефекты - нарушения периодичности решетки, имеющие протяженность только в одном направлении. Этот вид дефектов в литературе чаще называют дислокациями, которые бывают двух типов: краевые и винтовые.

Электрические свойства сплавов, в полном соответствии с изложенной ранее физической природой проводимости, определяются не только составом, но также структурой и ее дефектами. Сплавы могут быть получены совместным расплавлением компонентов, электролизом растворов солей, возгонкой, спеканием и другими методами. Компоненты, входящие в сплав, могут образовывать твердые растворы, химические соединения, механические смеси.

Примеры и задачи Справочными данными по удельным сопротивлениям, энергиям Ферми и длинам свободного пробега электронов в чистых металлах, можно рассчитать удельные сопротивления сплавов, даже содержащих несколько компонентов. В качестве примера, рассмотрим следующую задачу.

Проводниковые материалы Металлические проводниковые материалы разделяются на материалы высокой проводимости и материалы высокого сопротивления. Материалы высокой проводимости используются для изготовления проводов, обмоток электрических машин и аппаратов, электроизмерительных приборов и т.д. Материалы высокого сопротивления применяются в электронагревательных устройствах, лампах накаливания, реостатах и т.п. Металлические проводниковые материалы характеризуются удельным сопротивлением, температурными коэффициентами удельного сопротивления и линейного расширения, пределом прочности при растяжении и относительным удлинением при разрыве.

Свойства и применение меди Механизм, обуславливающий высокую электропроводность металлов рассмотрен в разделе " физическая природа проводимости". Здесь же только отметим, что в соответствии с теорией, медь весьма чувствительна к наличию примесей, которые вызывают дефекты структуры. Так например, при содержании в меди 0,5% цинка, кадмия или серебра ее удельное сопротивление увеличивается на 5%. При таком же содержании никеля, олова или алюминия удельное сопротивление увеличивается на 25-40%. Еще более сильное влияние оказывают примеси бериллия, мышьяка, железа, кремния и фосфора, которые увеличивают удельное сопротивление на 55% и более процентов.

Сплавы меди и их применение В ряде случаев, помимо чистой меди, в качестве проводникового материала применяют сплавы с небольшим содержанием олова, фосфора, кремния, бериллия, хрома, магния и кадмия. Такие сплавы называются бронзами. Бронзы имеют значительно более высокие механические свойства, чем медь. Например, предел прочности при растяжении у бронз доходит до 80-135 кг/мм 2.

Сплавы высокого сопротивления применяются в производстве электроизмерительных приборов, образцовых сопротивлений, реостатов и электронагревательных приборов.

Сплавы для термопар Для изготовления термопар применяют следующие сплавы: копель - медно-никелевый сплав, содержащий 56% меди и 44% никеля; алюмель - сплав никеля с алюминием, магнием и кремнием, содержащий 95% никеля; хромель - никель-хромовый сплав, содержащий 90% никеля и 10% хрома; платинородий - сплав содержит 90% платины и 10% родия.

Кроме электровакуумной промышленности вольфрам используется также как контактный материал. Применение его в качестве контактного материала обусловлено высокими твердостью и температурой плавления. Благодаря этому, вольфрамовые контакты устойчивы в работе, имеют малый механический износ, хорошо противостоят действию электрической дуги, у них практически отсутствует привариваемость. Вольфрамовые контакты мало подвержены эрозии, т.е. электрическому износу с образованием кратеров и наростов из-за местных перегревов и местного плавления металла.

Применение молибдена как контактного материала обусловлено его высокой температурой плавления, благодаря чему молибденовые контакты устойчивы в работе и мало подвержены электрической эрозии. Однако трудности обработки молибдена и достаточно высокое переходное сопротивление молибденовых контактов ограничивают их применение. Сплав молибден-никель, гальванически осажденный на другие контактные материалы, может стать перспективным в качестве контактирующего покрытия. Электролиты, позволяющие наносить такие покрытия доступны, а технология отработана достаточно хорошо. Сведения о таких покрытиях, также как о гальванических молибденовых пермаллоях, можно найти в литературе по гальванотехнике.

Никель - широко используется в электровакуумной технике, при умеренных температурах обработки он сочетает в себе многие свойства присущие танталу при высоких температурах. Никель достаточно прочен в технически чистом состоянии и может быть использован в виде сплавов с различными металлами, обладающими специальными свойствами. Никель обладает умеренным удельным сопротивлением и высоким его температурным коэффициентом, вследствие чего легко поддается точечной сварке и индукционному нагреву. Сравнительно низкое удельное сопротивление никеля при умеренных температурах, позволяет использовать его для токопроводящих выводов в электровакуумных приборах.

Припои - специальные сплавы, применяемые при пайке. Пайка-это металлургический процесс соединения нескольких изделий в одно целое с помощью металлической жидкой фазы - припоя. Пайка осуществляется с целью создания механически прочного, иногда герметичного шва, или с целью получения электрического контакта. При взаимодействии расплавленного припоя и металлов соединяемых изделий происходит образование металлической связи и их взаимная диффузия . Следовательно, состав и структура металла паянного шва будут совершенно иными по сравнению с первоначальным составом припоя. Это означает, что механические и электрические свойства шва будут отличаться не только от свойств соединяемых металлов, но и от свойств припоя.

Полупроводники