Основные теоремы электродинамики

Термех
Лаба

Графика

Чертежи

Реактор

Электроника

Принцип предельного поглощения и условия излучения на бесконечность Рассмотрели при формулировании условия единственности решения внешних задач электродинамики (уравнений Максвелла). Лемма Лоренца

Эквивалентные источники электромагнитного поля. Принцип Гюйгенца-Кирхгофа. Часто распределение сторонних источников бывает неизвестно, но зато бывает известным распределение поля на некоторой замкнутой поверхности, охватывающей область с источниками. Задача формулируется так: "Определить поле, создаваемое сторонними источниками с неизвестным распределением в области V по заданному распределению электромагнитного поля на поверхности S, охватывающей объем V".

Элемент Гюйгенса В качестве элемента Гюйгенса можно рассматривать элементарный фрагмент фазового фронта распространяющейся волны.

Элементы теории дифракции Строгая постановка задачи дифракции В большинстве реальных электромагнитных задачах поверхность раздела сред нельзя считать безграничной и плоской. А падающую волну плоской электромагнитной волной. В этом случае при падении электромагнитной волны на тело конечных размеров наряду с явлением отражения и преломления возникает процесс называемый дифракцией. В этом разделе будут рассмотрены методы решения задач рассеяния электромагнитной волны на металлических, расположенных в однородном изотропном пространстве. Волны будем считать гармоническими, металлические тела — идеально проводящими, а бесконечное изотропное пространство без потерь.

Приближение Гюйгенса-Кирхгофа Ранее было отмечено, что поле в любой точке пространства внешнего по отношению к объему V может быть однозначно определено по известным тангенциальным составляющим  и  на поверхности S. В качестве поверхности S в задачах дифракции удобно взять поверхность дифрагированного тела. Если на этой поверхности известны точные значения Еt и Нt , то используя принцип эквивалентности на поверхности S можно определить эквивалентные источники вторичного поля и далее, используя традиционный алгоритм, вычислить поле в заданной точке.

Рассмотрим дифракцию плоской волны на отверстии в идеально проводящей плоскости

Метод краевых волн Под физической теорией дифракции волн подразумевают методы решения дифракционных задач, в которых используются различного рода приближения при описании токов на рассматриваемой поверхности. Математическая теория дифракция включает строгие методы решения дифракционных задач. Метод краевых волн в физической теории дифракции является дальнейшим развитием метода физической оптики и предназначен для решения дифракционных задач на выпуклых металлических телах, имеющих изломы (ребра).

Направляющие системы и направляемые электромагнитные волны. Направляемые волны, в отличие от свободно распространяющихся в пространстве, могут существовать только при наличии направляющих элементов. Совокупность направляющих элементов образуют направляющую систему. Направляющие системы называют также линиями передачи энергии .
Все линии передачи можно разделить на два больших класса: линии передачи открытого типа и линии передачи закрытого типа. В линиях передачи закрытого типа вся энергия сосредоточена в пространстве, экранированном от внешнего  металлической оболочкой. В линиях передачи открытого типа ЭМП, строго говоря, распределено во всем пространстве, окружающем линию. Однако открытые линии выполнены обычно т.о., что подавляющая часть энергии ЭМП сосредотачивается в непосредственной близости от линии.

Критическая частота. Критическая длина волны

Электрические волны

Прямоугольный волновод

Круглый волновод. В круглом волноводе возможно раздельное существование волн E и H и невозможно распространение волн T.

Токи на стенках прямоугольного и круглого волноводов. Токи в прямоугольном волноводе при распространении волны H10 Предположим, что стенки волновода являются идеально проводящими. В этом случае токи проводимости текут по поверхности стенок. Плотность поверхностного тока численно равна напряженности тангенсальной составляющей магнитного поля у поверхности проводника

Волны в коаксиальной линии

Затухание волн в полых волноводах. Источники потерь в волноводах. Направляемые волны в любых линия передачи, их структура и характеристики, можно получить используя концентрацию порциальных плоских волн Т. Новый магазин предлагает дипломы бакалавров - заказать можно через наш сайт.

Колебательные системы СВЧ. Объемные резонаторы. Эволюция электромагнитных колебательных систем. Недостаток контура низкая добротность, связанная с уменьшением энергии электромагнитного поля в такой системе с увеличением активных потерь обусловленных поверхностным эффектом и с потерями на излучение. Возрастает запасенная энергия, уменьшаются потери. В таких объемных резонаторах сохранены конструктивные особенности присущие системам с сосредоточенными параметрами (можно выделить L и C).

Добротность объемных резонаторов

Волны с круговой поляризацией в гиромагнитных средах. Направление вращения магнитного момента определяется направлением постоянного подмагниченного поля. Если смотреть по направлению постоянного подмагниченного поля, то прецессия осуществляется по часовой стрелке. Поэтому имеет смысл вращение плоскости поляризации в ВЧ волне также связать не с направлением распространения волны, а с направлением силовых линий постоянного подмагниченного поля. Будем ВЧ поле называть правополяризованным, если вектор  ВЧ поля вращается в плоскости ^ вектору магнитному полю постоянному по часовой стрелке смотрим по направлению Но.

Теория линии передач конечной длины. Распространение электромагнитной волны в линиях передач конечной длины. Реальные линии передачи всегда имеют конечную длину. Включение в некоторое сечение нагрузки приводит к изменению граничных условий, как в данном сечении, так и во всей линии. Обычно это изменение структуры представляют как результат интерференции падающих и отраженных волн в линии передач.

Нормированное эквивалентное сопротивление ЛП. Нормированное эквивалентное сопротивление нагрузки

Волновые матрицы четырехполюсников. Матрицы рассеяния и передачи. Предположим, что к некоторому объему, который рассматривается в качестве нагрузки, подключены два отрезка одинаковой,регулярной линии передачи

Линейные свойства СВЧ. Элементы линий передачи. Неоднородности и нерегулярности в Л.П. Нерегулярности в Л.П. называются любые изменения поперечного сечения или электродинамических свойств среды заполн. Л.П.Неоднородности в Л.П. называются любые нарушения неоднородности заполняющие.К нерегулярности относятся устройства возбужд. Волн в Л.П. ступенчатые и плавные переходы, согласующие устройства делители фильтры и т.д.

Полупроводники