Понятие обратной и сложной функции. Взаимно обратные функции .

Гипербола и парабола.

Гипербола. Гиперболой называется геометрическое место точек, разность расстояний которых от двух данных фиксированных точек (фокусов) гиперболы есть одна и та же постоянная величина. Предполагается, что эта постоянная величина не равна нулю и меньше, чем расстояние между фокусами.

Простейшее уравнение гиперболы

Здесь a - действительная полуось гиперболы, b - мнимая полуось гиперболы.

Если 2c - расстояние между фокусами гиперболы, то между a, b и c существует соотношение

a2 + b2 = c2.

При b = a гипербола называется равносторонней. Уравнение равносторонней гиперболы имеет вид

x2 - y2 = a2.

Фокусы гиперболы лежат на ее действительной оси.

Эксцентриситетом гиперболы называется отношение расстояния между фокусами этой гиперболы к длине ее действительной оси.

Асимптоты гиперболы - две прямые, определяемые уравнениями

Напомним, что асимптотой кривой, имеющей бесконечную ветвь, называется прямая, которая обладает тем свойством, что когда точка по кривой удаляется в бесконечность, ее расстояние до этой прямой стремится к нулю.

1. Кудрявцев Л.Д. Краткий курс математического анализа. т. 1, 2. Альфа, 1998 (Физматлит, 2005). 2. Кудрявцев Л.Д., Кутасов А.Д., Чехлов В.И., Шабунин М.И. Сборник задач по математическому анализу. Т.1 Предел. Непрерывность. Дифференцируемость. М., Физматлит, 2003. 3. Кудрявцев Л.Д., Кутасов А.Д., Чехлов В.И., Шабунин М.И. Сборник задач по математическому анализу. Т. 2. Интегралы. Ряды. М., Физматлит, 2003. 4. Кудрявцев Л.Д., Кутасов А.Д., Чехлов В.И., Шабунин М.И. Сборник задач по математическому анализу. Т. 3. Функции нескольких переменных. М., Физматлит, 2003. 5. Минорский В.П. Сборник задач по высшей математике. - М.: Физматлит 2001. 6. Пикулин В.П., Похожаев С.И. Практический курс по уравнениям математической физики. М., Наука, 1995. 7. Привалов И.И. Введение в теорию функций комплексного переменного. Высшая школа,1999 8. Привалов И.И. Аналитическая геометрия. Лань, 2008 9. Сборник задач по математике для втузов. Под ред. Ефимова А.В., Поспелова А.С. М., Физматлит, ч.1-4, 2001 - 2004. 10. Севастьянов Б.А., Чистяков В.П., Зубков А.М. Сборник задач по теории вероятностей. М., Наука, 1980. 11. Свешников А.Г., Тихонов А.Н. Теория функций комплексного переменного. М., Наука, 1999 (Физматлит, 2001). (ФИЗМАТЛИТ, 2004). 12. Тихонов А.Н., Самарский А.А. Уравнения математической физики. М., Наука, 1993, М.: Изд-во МГУ, 2004(серия "Классический университетский учебник"). 13. Цубербиллер О.Н. Задачи и упражнения по аналитической геометрии. Лань, 2007 1. Чистяков В.П. Курс теории вероятностей. М., Наука, 1988, С.П-М-К, Лань, 2003 14. Эльсгольц Л.Э. Дифференциальные уравнения и вариационное исчисление. М., Эдиториал УРСС, 2000.

Возрастание и убывание функции