Физика
Электротехника
Искусство
Термех
Задачи
Информатика
Контрольная
Лаба

Графика

Курсовая
Математика
Чертежи

Реактор

Энергетика
Сопромат
Электроника

Парабола. Параболой называется геометрическое место точек, каждая из которых одинаково удалена от заданной фиксированной точки и от заданной фиксированной прямой. Точка, о которой идет речь в определении, называется фокусом параболы, а прямая - ее директрисой.

Простейшее уравнение параболы

y2 = 2px.     (*)

Входящая в это уравнение величина p называется параметром параболы. Параметр параболы равен расстоянию от директрисы параболы до ее фокуса.

Координаты фокуса F параболы (*) . (фокус параболы лежит на ее оси симметрии) Уравнение директрисы параболы (*)

Эксцентриситет параболы e = 1.


y2 = 2px (p > 0)

Общее уравнение плоскости.

Общее уравнение плоскости (рис. 4.13)

где - нормальный вектор плоскости.

     В векторном виде .

Теория пределов функций одной переменной. Понятие функции. Простейшие функции и их графики. Предел функции в точке. Единственность предела. Локальная ограниченность функции, имеющей предел. Бесконечно малые функции и их свойства. Свойства функции, имеющей ненулевой предел. Теоремы о пределе суммы, разности, произведения и частного двух функций, имеющих предел. Переход к пределу в неравенствах. Теорема о пределе "зажатой" функции. Первый замечательный предел. Предел функции при х? +?, х???, х??. Односторонние пределы. Теорема о связи предела функции и односторонних пределов. Предел последовательности. Теорема осуществовании предела неубывающей и ограниченной сверху последовательности. Число "е". Непрерывность функции в точке. Классификация точек разрыва. Локальные свойства непрерывных функций. Теоремы о пределе и непрерывности сложной функции. Свойства функций, непрерывных на отрезке. Эквивалентные функции. Таблица эквивалентных функций.

Полупроводники

ТОЭ
Готика
Компьютерная сеть
Практикум